Almost Optimal Bounds for Direct Product Threshold Theorem

نویسنده

  • Charanjit S. Jutla
چکیده

We consider weakly-verifiable puzzles which are challenge-response puzzles such that the responder may not be able to verify for itself whether it answered the challenge correctly. We consider k-wise direct product of such puzzles, where now the responder has to solve k puzzles chosen independently in parallel. Canetti et al have earlier shown that such direct product puzzles have a hardness which rises exponentially with k. In the threshold case addressed in Impagliazzo et al, the responder is required to answer correctly a fraction of challenges above a threshold. The bound on hardness of this threshold parallel version was shown to be similar to Chernoff bound, but the constants in the exponent are rather weak. Namely, Impagliazzo et al show that for a puzzle for which probability of failure is δ, the probability of failing on less than (1− γ)δk out of k puzzles, for any parallel strategy, is at most e 2δk/40. In this paper, we develop new techniques to bound this probability, and show that it is arbitrarily close to Chernoff bound, i.e. e 2δk/2. We show that given any responder that solves k parallel puzzles with a good threshold, there is a uniformized parallel solver who has the same threshold of solving k parallel puzzles, while being oblivious to the permutation of the puzzles. This enhances the analysis considerably, and may be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructive Proofs of Concentration Bounds

We give a simple combinatorial proof of the Chernoff-Hoeffding concentration bound [Che52, Hoe63], which says that the sum of independent {0, 1}-valued random variables is highly concentrated around the expected value. Unlike the standard proofs, our proof does not use the method of higher moments, but rather uses a simple and intuitive counting argument. In addition, our proof is constructive ...

متن کامل

Quantum Direct Product Theorems for Symmetric Functions and Time-Space Tradeoffs

A direct product theorem upper-bounds the overall success probability of algorithms for computing many independent instances of a computational problem. We prove a direct product theorem for 2-sided error algorithms for symmetric functions in the setting of quantum query complexity, and a stronger direct product theorem for 1-sided error algorithms for threshold functions. We also present a qua...

متن کامل

A strong direct product theorem in terms of the smooth rectangle bound

A strong direct product theorem states that, in order to solve k instances of a problem, if we provide less than k times the resource required to compute one instance, then the probability of overall success is exponentially small in k. In this paper, we consider the model of two-way public-coin communication complexity and show a strong direct product theorem for all relations in terms of the ...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

A lower bound for the power of periodic solutions of the defocusing Discrete Nonlinear Schrödinger equation

We derive lower bounds on the power of breather solutions ψn(t) = e −iΩtφn, Ω > 0 of a Discrete Nonlinear Schrödinger Equation with cubic or higher order nonlinearity and site-dependent anharmonic parameter, supplemented with Dirichlet boundary conditions. For the case of a defocusing DNLS, one of the lower bounds depends not only on the dimension of the lattice, the lattice spacing, and the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009